skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bamler, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Training a classifier over a large number of classes, known as ’extreme classification’, has become a topic of major interest with applications in technology, science, and e-commerce. Traditional softmax regression induces a gradient cost proportional to the number of classes C, which often is prohibitively expensive. A popular scalable softmax approximation relies on uniform negative sampling, which suffers from slow convergence due a poor signal-to-noise ratio. In this paper, we propose a simple training method for drastically enhancing the gradient signal by drawing negative samples from an adversarial model that mimics the data distribution. Our contributions are three-fold: (i) an adversarial sampling mechanism that produces negative samples at a cost only logarithmic in C, thus still resulting in cheap gradient updates; (ii) a mathematical proof that this adversarial sampling minimizes the gradient variance while any bias due to non-uniform sampling can be removed; (iii) experimental results on large scale data sets that show a reduction of the training time by an order of magnitude relative to several competitive baselines. 
    more » « less
  2. We propose a novel algorithm for quantizing continuous latent representations in trained models. Our approach applies to deep probabilistic models, such as variational autoencoders (VAEs), and enables both data and model compression. Unlike current end-to-end neural compression methods that cater the model to a fixed quantization scheme, our algorithm separates model design and training from quantization. Consequently, our algorithm enables “plug-and-play” compression at variable rate-distortion trade-off, using a single trained model. Our algorithm can be seen as a novel extension of arithmetic coding to the continuous domain, and uses adaptive quantization accuracy based on estimates of posterior uncertainty. Our experimental results demonstrate the importance of taking into account posterior uncertainties, and show that image compression with the proposed algorithm outperforms JPEG over a wide range of bit rates using only a single standard VAE. Further experiments on Bayesian neural word embeddings demonstrate the versatility of the proposed method. 
    more » « less
  3. null (Ed.)